Some Generalizations of Frames in Hilbert Modules
نویسندگان
چکیده
Frames play significant role in various areas of science and engineering. In this paper, we introduce the concept frames for set all adjointable operators from ℋ to id="M2"> mathvariant="script">K their generalizations. Moreover, obtain some new results generalized Hilbert modules.
منابع مشابه
Frames in super Hilbert modules
In this paper, we define super Hilbert module and investigate frames in this space. Super Hilbert modules are generalization of super Hilbert spaces in Hilbert C*-module setting. Also, we define frames in a super Hilbert module and characterize them by using of the concept of g-frames in a Hilbert C*-module. Finally, disjoint frames in Hilbert C*-modules are introduced and investigated.
متن کامل*-frames for operators on Hilbert modules
$K$-frames which are generalization of frames on Hilbert spaces, were introduced to study atomic systems with respect to a bounded linear operator. In this paper, $*$-$K$-frames on Hilbert $C^*$-modules, as a generalization of $K$-frames, are introduced and some of their properties are obtained. Then some relations between $*$-$K$-frames and $*$-atomic systems with respect to a...
متن کاملSome Properties of $ ast $-frames in Hilbert Modules Over Pro-C*-algebras
In this paper, by using the sequence of adjointable operators from pro-C*-algebra $ mathcal{A} $ into a Hilbert $ mathcal{A} $-module $ E $. We introduce frames with bounds in pro-C*-algebra $ mathcal{A} $. New frames in Hilbert modules over pro-C*-algebras are called standard $ ast $-frames of multipliers. Meanwhile, we study several useful properties of standard $ ast $-frames in Hilbert modu...
متن کاملFrames for Hilbert C*-modules
There is growing evidence that Hilbert C*-module theory and the theory of wavelets and Gabor (i.e. Weyl-Heisenberg) frames are tightly related to each other in many aspects. Both the research fields can benefit from achievements of the other field. The goal of the talk given at the mini-workshop was to give an introduction to the theory of module frames and to Hilbert C*modules showing key anal...
متن کاملG-frames in Hilbert Modules Over Pro-C*-algebras
G-frames are natural generalizations of frames which provide more choices on analyzing functions from frame expansion coefficients. First, they were defined in Hilbert spaces and then generalized on C*-Hilbert modules. In this paper, we first generalize the concept of g-frames to Hilbert modules over pro-C*-algebras. Then, we introduce the g-frame operators in such spaces and show that they sha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences
سال: 2021
ISSN: ['1687-0425', '0161-1712']
DOI: https://doi.org/10.1155/2021/5522671